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Abstract

Instruction following for vision-and-language naviga-
tion (VLN) has prompted significant research efforts de-
veloping more powerful “follower” models since its incep-
tion in [1]; however, the inverse task of generating visually
grounded instructions given a trajectory – or learning a
“speaker” model – has been largely unexamined. This task
is itself a challenging visually-grounded language gener-
ation problem akin to video or image captioning. Unlike
these tasks however, instruction generation has a straight-
forward notion of correctness – can a follower arrive at the
correct location based on generated instructions? Further,
improved speaker models can be leveraged to strengthen
follower models via data augmentation or back-translation.

In this abstract we present a work-in-progress “speaker”
model that generates navigation instructions in two stages,
by first selecting a series of discrete visual landmarks along
a trajectory using hard attention, and then second generat-
ing language instructions conditioned on these landmarks.
This two-stage approach improves over prior work, while
also permitting greater interpretability. We hope to extend
this to a reinforcement learning setting where landmark se-
lection is optimized to maximize a follower’s performance
without disrupting the model’s language fluency.

1. Introduction
Lost trying to find Jane’s office, you call a friend familiar

with the building who says “Take a left from the lobby and
go down the hallway with a large painting at the end. Jane’s
office is on the left opposite the break room.” To generate
this instruction, the “speaker” composed a series of actions
(“take a left”, “go down the hallway”) grounded in visual
content the “follower” would observe (e.g. “lobby”, “large
painting”). The key question in this work is how to develop
models that mirror this capability in realistic environments.

This task – which we refer to as trajectory-grounded in-
struction generation – is a challenging visually-grounded

language generation problem. Concretely, given a trajec-
tory through an environment consisting of both the visual
perceptions and actions associated with each time step, the
task is to produce a natural language instruction that suc-
cinctly conveys the information necessary to reproduce the
trajectory. In addition to its research merit as a step towards
improved human-robot collaboration, this task is relevant to
a number of immediate practical applications such as nav-
igation apps that provide audible directions and do not re-
quire users to look at an on-screen map.

Unlike related tasks such as image and video captioning,
trajectory-grounded instruction generation has a pragmatic
evaluation metric – can a follower arrive at the correct lo-
cation given the instructions? Further, this task also differs
in the fact that the vast majority of visual content observed
along a trajectory is irrelevant to the generated instructions.
Consider our initial example; only a few visual concepts
were referenced (“lobby”, “painting”, “break room”), based
both on their visual saliency (i.e. likelihood of being no-
ticed) and their utility as efficient landmarks for navigation.

In an effort to model this problem structure, we decom-
pose the task of generating instructions into two stages –
first selecting salient landmarks in the trajectory through a
hard-attention mechanism, and then using these landmarks
to generate the instruction via a sequence-to-sequence
model with soft attention. Notably we also observe that
given the trajectory including actions, landmark selection
can be performed independently for each time step. De-
coupling these stages permits greater intepretability in the
model’s visual grounding while simultaneously improving
over a standard sequence-to-sequence approach [5] in our
experiments. This structure also allows for direct interven-
tion experiments to change the focus of instructions and ex-
amine the extent of the visual grounding.

Looking forward, our landmark selection model pro-
vides a compact decision space for a reinforcement learn-
ing agent to operate on. With a fixed language generation
model, such an agent could optimize landmark selection to
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Figure 1. Proposed model illustrating visual landmark selection
with hard attention (left) and landmark to instruction decoding us-
ing Seq2Seq with soft attention (right).

improve a follower’s success without having to grapple with
the significantly larger vocabulary space and the problem
of radical divergence from natural language (i.e. linguistic
drift). We leave this as future work.

2. Related work
Vision-and-Language Navigation. Significant efforts have
been devoted to the problem of following natural language
navigation instructions in perceptually realistic virtual envi-
ronments [1, 5, 18, 11, 10, 8, 15]. Much of the recent work
in this area has been tied to the Room-2-Room (R2R) in-
struction dataset presented in [1]. This dataset consists of
∼7200 trajectories through Matterport3D [2] virtual envi-
ronments each with three human-annotated instructions for
following the trajectory. While originally collected for the
instruction following task, we utilize this dataset to learn to
generate trajectory-grounded instructions.

Visually-grounded Instruction Generation. Compared to
the problem of following instructions, comparatively less
recent attention has been devoted to the inverse problem
of visually-grounded instruction generation [5, 3]. How-
ever, several works have demonstrated that instruction gen-
eration (speaker) models can be leveraged to significantly
improve follower models via data augmentation or back-
translation [5, 15], which further motivates our work.

3. Approach
Our speaker model consists of a hard-attention based vi-

sual landmark encoder that selects important landmarks and
a sequence-to-sequence instruction decoder that transforms
these landmarks into grounded instructions (refer Figure 1).

3.1. Encoding Trajectories
Notation. A navigation trajectory x is an ordered sequence
of panoramic views (p1, p2, p3, ..., pm) where m is the num-

ber of total steps in x. Note we also assume relative infor-
mation between the panoramas such as direction and dis-
tance, which is reasonable for an agent actually traveling
this trajectory. Further, trajectory x is paired with a natural
language instructions y = (w1, w2, . . . , wT ). While there
are three instructions per trajectory, we ignore this for nota-
tional clarity but do consider all instructions during training.

Visual Representation. Following prior work [5], we di-
vide the panoramic sphere into 36 patches which cover-
ing three level of elevations each with 12 equally spaced
patches covering 360 degrees horizontally. As in [1], we
pre-compute a 2048-dimensional visual feature for each
patch from the final convolutional layer of a frozen ResNet
[6] pretrained on ImageNet [14]. As such, each panorama
pi is described by a 36 × 2048 matrix Vi where each row
V

(j)
i is a visual feature vector for one of the 36 patches in

the panoramic view.

Directional Encodings. There is a great deal of directional
information in a trajectory that our model also needs to rea-
son about – such as heading changes and relative angles
– in order to generate instructions like “turn left” or “op-
posite the break room”. For each patch j in panorama pi,
we have the corresponding direction d

(j)
i =[h

(j)
i , e

(j)
i ] con-

sisting of the patch’s heading and elevation angles h(j)
i and

e
(j)
i . Further, we assume access to the incoming and outgo-

ing directions to neighbouring panoramas d(in)i =[h(in)
i , e(in)

i ]

and d
(out)
i =[h(out)

i , e(out)
i ]. To represent angular differences,

we introduce an encoding function f(d(j), d(k)) defined as

f(d(j), d(k))=
[
sin(h(j) − h(k)), cos(h(j) − h(k)),

sin(e(j) − e(k)), cos(e(j) − e(k))
]

(1)

We extend the visual feature matrix Vi by concatenating rel-
ative direction encodings with the incoming and outgoing
directions for each patch as well as a fixed encoding be-
tween the incoming and outgoing directions. We denote
this augmented matrix as Di and can write its jth row as

D
(j)
i =

[
V

(j)
i : f(d(j), d(out)) : f(d(j), d(in)) : f(d(in), d(out))

]
(2)

where we use : to denote vector concatenation. In practice,
we find replicating the directional encodings useful and re-
peat each 32 times when forming D

(j)
i above.

3.2. Visual Landmark Selection
Now that we have encoded our trajectory into a series of

matrices (D1, D2, ..., Dm) containing direction-augmented
visual features, we would like to learn to identify impor-
tant landmarks to guide instruction generation. To select
landmarks, we perform hard self-attention independently on
each panorama – outputting one landmark (patch) li from



val-seen val-unseen

Method Bleu-1 Bleu-4 CIDEr Meteor Rouge SPICE Follower Bleu-1 Bleu-4 CIDEr Meteor Rouge SPICE Follower

SF Speaker [5] 0.537 0.155 0.121 0.233 0.350 0.203 0.491 0.522 0.142 0.114 0.228 0.346 0.188 0.273

Softmax 0.549 0.156 0.132 0.233 0.354 0.214 0.501 0.548 0.157 0.129 0.231 0.357 0.199 0.270
Gumbel Softmax 0.541 0.157 0.134 0.234 0.356 0.213 0.487 0.529 0.150 0.125 0.229 0.353 0.191 0.281

2-Phase 0.549 0.157 0.137 0.228 0.352 0.214 0.492 0.548 0.159 0.132 0.231 0.357 0.197 0.272

Table 1. Instruction generation performance on the R2R validation sets. For “SF speaker” row we use the “speaker” model released by [5].
For all other rows we report the average of 3 runs in each column. We find that our model improves over prior work across both splits, and
2-Phase training produces a hard attention model with comparable performance to softmax attention.

each panorama pi based on features Di.
To give the self-attention mechanism context of the next

trajectory step, we define a matrix Ci as the concatenation
of Di and a tiling of D(out)

i (the feature for the patch most
aligned with the outgoing direction), such that each row of
Ci can be written C

(j)
i = [D

(j)
i : D(out)

i ]. We pass Ci

to a series of three transformer-style self-attention blocks
which we do not describe in detail here for sake of space. In
essence, these modules learn to iteratively refine query vec-
tors through attention-based interactions – please see [16]
for full details. After the third round of attention, we take
the average query vector qavg and compute a final attention
vector over embeddings of the direction-augmented visual
features given by:

a = softmax
(
(qTavg ◦K)/

√
dq

)
(3)

K = DT
i Wfc + bfc (4)

where dq it length of qavg and ◦ is a broadcasted dot prod-
uct. We can then select the final output landmark as

li = KT · 1[argmax a] (5)
where 1[x] is a one-hot vector with 1 at the xth position. As
the argmax operation is not differentiable, we train using the
Gumbel softmax straight-through estimator from [7, 12].

We perform this attention for each panorama yielding a
sequence of landmarks. Notably, each landmark is just a
linear embedding of the direction-augmented feature repre-
sentation of a panorama patch. This means that while sig-
nificant mixing occurs during the self-attention process, the
final output to the instruction generation model is simply
one of the initial observations.

3.3. Instruction Decoding
To generate the final instruction from a sequence of land-

marks, we use a sequence-to-sequence model with soft at-
tention similarly to [5]. Contextual information between the
landmarks is captured through a bidirectional LSTM en-
coder that takes the landmark sequence and produces hid-
den states h1, h2, ..., hm. An LSTM decoder then generates
the instruction by attending over the encoder hidden states
at each time step before selecting the output word. The de-

coder then updates it state and repeats this process until the
end of sentence token is generated.

4. Experiments
Dataset. We evaluate in the Room-to-Room (R2R) in-
struction dataset presented in [1]. The dataset consists
of ∼21,500 natural language instructions corresponding to
∼ 7, 200 trajectories through the virtual 3D environments
of Matteport3D [2]. The dataset is split into training, val-
seen, val-unseen, and test sets. We evaluate on val-seen and
val-unseen which correspond to new trajectories in either
seen or unseen environments.

Evaluation Metrics To evaluate generated instructions we
examine captioning metrics as well as follower success.
– Fluency: To evaluate agreement with the 3 human-

written instructions associated with each trajectory, we
use standard image caption evaluation metrics such as
Bleu [13], Meteor [4], Cider [17], Rouge [9], Spice [9].

– Follower: We also report the success rate of a follower
given the generated instructions. In place of a human
follower, we use a model from prior work [5]. For a
fair comparison of speaker performance, we skip the
“Speaker-Driven Data Augmentation” and “Pragmatic
Inference” training steps that co-train the speaker and fol-
lower model in their approach.

Higher scores on the follower metric would suggest that the
instruction is more understandable and useful for a human
trying to follow that trajectory which is what we care about.

Training. We train our model to minimize cross-entropy
loss of ground-truth human instructions. In addition to
directly training our hard-attention model (Gumbel Soft-
max), we also examine a soft-attention model, i.e li =
KT · a, (Softmax) and a hard-attention model initialized
from a soft-attention model after 20k iterations (2-Phase).

4.1. Results
Table 1 shows results for the R2R validation sets for

our approach and a baseline sequence-to-sequence model
from [5]. We find that our model with soft-attention outper-
forms the baseline on almost all metrics across both splits



Figure 2. Soft attention grounding between generated instruction
words and the selected visual landmarks along the input trajectory.

– indicating that the independent self-attention and direc-
tional encoding strategy we employ is effective at this task
generally. Further, we find that the 2-Phase training ap-
proach improves significantly over training with Gumbel
softmax from scratch, producing a hard attention model
with comparable performance to our soft-attention variant.
This improves interpretability and opens up significant op-
portunities for future work using reinforcement learning ap-
proaches to optimize landmark selection while maintaining
the fluency of the generated instructions.

Visual Grounding. We show an example of visual ground-
ing for the instructions generated by our model in Figure 2.
The 5 images at top are visual landmarks selected by our
hard attention model from 36 viewpoints at each step in the
input trajectory. The heatmap illustrates the soft attention
weights in the instruction decoder, illustrating correct vi-
sual grounding for phrases such as “dining room table and
chairs”, “hallway”, and “doorway to the bedroom”.
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